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Discrete bright solitary waves in quadratically nonlinear media

T. Peschel,* U. Peschel, and F. Lederer†

Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, German
~Received 13 May 1997!

We show that bright solitary waves of different topologies can exist in a discrete system with a quadratic
nonlinearity. Analytical solutions can be derived for a limiting case. The regions of existence and stability are
identified. We numerically study interaction and collision phenomena. Various decay scenarios for unstable
solutions are discussed.@S1063-651X~98!00801-0#

PACS number~s!: 42.65.Tg, 42.65.Ky
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I. INTRODUCTION

Within the past several years the interest in nonlinear
tical effects based on quadratic nonlinearities has consi
ably renewed. In contrast to previous studies where the
tention was primarily centered on the dynamics of t
frequency conversion process~second-harmonic generation
parametric effects! recent work focuses on the phase mod
lation of the fundamental~FH! as well as the second ha
monic ~SH!. This phase modulation accompanies the fam
iar amplitude modulation, being the basis of any frequen
conversion, and may be obviously exploited in fields th
have been considered the arena of cubic nonlinear effe
Typical examples are all-optical switching phenomena in
terferometric or coupler configurations as well as spatial
temporal solitary wave formation in planar waveguides~for a
review, see Ref.@1# and the references therein!. Frequently it
was attempted to explain these effects in terms of an ef
tive cubic nonlinearity. But it turned out that the quadra
scenario may be potentially richer evidenced by recent
sults such as, e.g., an incoherent switching scheme@2#, the
formation of stable solitary waves in bulk media@3#, the
homogeneous phase modulation across a short pulse@4#, the
existence of stable chirped solitary waves@5,6#, and the pe-
culiar features of Bragg grating solitary waves@7#.

Another fundamental issue that has attracted much at
tion in various configurations with cubic nonlinearities a
that to our knowledge has not been addressed in the
dratic environment until now, is the existence and stability
intrinsic localized solutions in discrete systems. In the cu
case the study of these solutions, often referred to as disc
self-trapped solutions or discrete solitary waves, is a ma
subject in nonlinear physics since the pioneering work
Fermi, Pasta, and Ulam@8#. The relevant topic of these stud
ies is how discreteness affects the dynamics of nonlin
systems beyond the continuum approximation. Recently
was pointed out~see, e.g., Refs.@9,10# and the reference
therein! that arrays of nonlinear waveguides may represe
convenient laboratory to experimentally verify the numero
theoretical predictions. Thus it seems worthwhile to stu
the effects of discreteness in quadratic nonlinearities in
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environment. Field dynamics in a linearly coupled array
nonlinear waveguides may be considered as a general
that covers two limiting cases, viz., spatial solitary wave fo
mation in a planar waveguide~continuous limit! and nonlin-
ear switching in a two-core coupler. For quadratic nonl
earities both effects have been theoretically predicted@11,12#
and experimentally confirmed recently@13,14#. Hence it can
be anticipated that such intrinsic localized solutions, hen
forth termed discrete solitary waves~DSWs!, may be formed
in quadratic nonlinear waveguide arrays as well. The pe
liarities of DSWs in cubic materials with respect to the
continuous counterparts, such as the existence of bright
tial DSWs in defocusing media, are mainly due to the p
ticular dispersion relation of the linear waves, which allow
for ‘‘negative diffraction’’ if the envelopes in adjacen
waveguides have opposite phases~staggered solutions@15#!.
So it is intuitively clear that similar solutions should als
arise in the quadratic case but it can be also expected tha
existence of a two-component field~FH and SH! with differ-
ent linear properties of each component will add more
grees of freedom to the solution. Because of the wavegu
dispersion and the frequency dependence of linear coup
FH and SH propagate as a matter of fact in different arra
Moreover, the wave vector mismatch between the FH a
the SH will strongly affect the character of nonlinear inte
action, i.e., its sign controls the sign of phase modulation@4#.
Eventually it is anticipated that localization, which is a typ
cal effect of discreteness@16#, depends on the explicit form
of the nonlinearity.

The aim of this paper is to identify regions of existen
for discrete solitary waves in arrays of quadratically nonl
ear waveguides, to discuss their basic properties, and to
vestigate their mutual interactions. Particular emphasis
paid to effects that are peculiar for quadratic nonlineariti
The structure of the paper is as follows: In Sec. II we der
the basic equations as well as the nonlinear dispersion r
tion. Stationary discrete solitary wave solutions are anal
cally and numerically derived in Sec. III. The investigatio
of the dynamical behavior of these solutions~stability, inter-
actions, collisions! in Sec. IV concludes the paper.

II. THE NONLINEAR DISPERSION RELATION

In the framework of a coupled-mode theory the contin
ous wave evolution of the envelopes of the FH (un) and the
SH modes (vn) in the nth guide can be described by a sy
1127 © 1998 The American Physical Society
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1128 57T. PESCHEL, U. PESCHEL, AND F. LEDERER
tem of ordinary differential equations. In deriving that sy
tem one can take advantage of recent works concerning
rays formed by cubic nonlinear waveguides@9# and
continuous systems~e.g., planar waveguides! with quadratic
nonlinearities@4,17#. We straightforwardly get

FH: i
dun

dz
1cu~un111un21!12un* vn50, ~1a!

SH: i
dvn

dz
1cv~vn111vn21!2Dvn1un

250. ~1b!

Here we have assumed that the guides are identical, that
nearest neighbor interaction, expressed by the linear c
pling constantscu,v , takes place, and that the nonlinear co
pling is relevant only between FH and SH in the same gu
Equation~1! is normalized as usual where the length and
power scales are set by one of the inverse linear coup
constants and the quadratic nonlinear coefficient, resp
tively @4,9#, andD denotes the scaled wave vector misma
between FH and SH. It is evident that eithercu or cv amount
then to unity but we maintain the general notation for t
sake of flexibility. In relevant waveguide arrays arbitrary r
tios cu /cv can be achieved. One might anticipate that
confinement of the SH mode is stronger than that of the
implying cu /cv.1. But if the dispersion of the host excee
that of the core material the opposite situation with stron
coupled SH modes occurs.

The system~1! has two conserved quantities that can
used to characterize DSW solutions, i.e., the guided pow

E5 (
n52`

`

~ uunu212uvnu2! ~2a!

and the Hamiltonian

H52 (
n52`

`

~cuun* un111cvvn* vn11

1un
2vn* 2 1

2 Duvnu21c.c.!. ~2b!

In order to identify the region where DSWs may exist it
convenient to inspect the dispersion relation of a plane w
solution

un~z!5u0exp@ i ~lpwz1kn!#

and

vn~z!5v0exp@2i ~lpwz1kn!#,

which relates the propagation constantlpw to the transverse
wavenumberk. This relation depends on the power carri
by the FH and reads as

@lpw2cvcos~2k!1D/2# @lpw22cucos~k!#2uu0u250.
~3!

Obviously, the existence of bright DSWs requires two p
requisites, viz., their wave vectorsl have to be situated in
regions in thek-l plane where~i! linear plane waves@real-
valued solutions of Eq.~3! for uu0u250] must not exist, but
-
ar-
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e
,

y
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-

~ii ! nonlinear plane waves are allowed to propagate. In Fig
the linear dispersion relation of both waves is marked
solid lines. In the shaded areas nonlinear plane waves
permitted. Thus the DSW wave numberl has to be located
outside the bands defined by the respective linear disper
relations. Note that the mismatchD plays a significant role in
determining the corresponding region. So, we can concl
that bright DSWs may exist either for

l.max~2cu ,cv2D/2! ~4a!

or for

l,min~22cu ,2cv2D/2!. ~4b!

This splitting in the wave vector domain is a typical effect
discreteness. In continuous systems where the linear dis
sion is essentially parabolic the relevant wave-vector reg
is connected and the wave vectors are either positive or n
tive. In arrays with a cubic nonlinearity a transition from on
region to the other can be achieved by simultaneously cha
ing the sign of nonlinearity and the phase between adjac
guides byp ~transition from staggered to unstaggered so
tions or vice versa!. This is due to the invariance of th
relevant dynamic equation with respect to these transfor
tions. In the quadratic scenario the situation is more involv
because this invariance does not hold.

III. DISCRETE SOLITARY WAVE SOLUTIONS

After having identified the regions where DSWs may e
ist we are going to derive the explicit solutions in this se
tion. In looking for stationary DSW solutions to Eq.~1! we
introduce the ansatz un(z)5unexp(ilz) and vn(z)
5vnexp(2ilz) into Eq. ~1! and exploit that these solution
are real valued~except of a trivial phase transformatio
un→uneiw, andvn→vne2iw) to get

2lun1cn~un111un21!12unvn50, ~5a!

22lvn1cv~vn111vn21!2Dvn1un
250. ~5b!

As a matter of fact the system~5! can only be solved numeri
cally and we are going to do that later. But to get som
insight into the general tendencies we investigate two lim
ing cases first. If the coupling for one of the two frequen
components disappears, the system simplifies considera

FIG. 1. Nonlinear continuous waves in the plane defined by
propagation constantslcw and the transverse wavenumberk for
different values of the phase mismatchD; cu51, cv51; dark gray
area: antiphase waves, light gray area: in-phase waves, white
no waves, bold lines: linear dispersion relation of FH and SH.
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57 1129DISCRETE BRIGHT SOLITARY WAVES IN . . .
and basic features of the solutions that are determined by
remaining energy transfer process are illuminated in m
detail. Strictly speaking zero coupling is never achievab
However, the coupling strength can vary considerably. It
creases exponentially with the square root of the differe
between the effective index of the guided mode and tha
the cladding material. If the dispersion of the cladding diffe
strongly from that of the core either coupling constant w
always be very small.

We study the limiting case of vanishing coupling of th
SH components first (cu51, cv50). Then the system sim
plifies to a familiar case. From Eq.~5b! we getvn5un

2/(2l
1D) and subsequently the system~5! is reduced to

lun5un111un211
2

2l1D
uunu2un , ~6!

which constitutes the cubic or Kerr limit~see, e.g., Refs.@9,
15,18,19#!. Depending on the magnitude and sign of wa
numberl and detuningD the effective cubic nonlinearity
may be either focusing or defocusing. A peculiarity of th
limit is that in the same array~fixed quadratic nonlinearity
fixed coupling constants! bright unstaggered (2l1D.0) as
well as staggered (2l1D,0) DSWs can coexist, which
contrasts the conventional cubic case. Within this Kerr lim
both kinds of DSWs exhibit a similar intensity profile. As w
are going to show below this symmetry is destroyed if
SH components are allowed to couple~see Fig. 2!. For the
cubic scenario it has been shown that approximate ana
solutions can be found for highly localized states~only 3 or
4 guides are participating in the coupling process! @18#. That
technique could be likewise exploited here. Because the
bic ~Kerr! case was intensively studied in the literature~see,
he
e
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f
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e.g., @9# and the references therein! we leave this limit and
consider the opposite situation where merely the SH wa
couple (cu50, cv51). Because the complete energy e
change is mediated by the SH wave we can expect to iden
peculiar effects introduced by the quadratic nonlinearity.
addition a one parameter family of stationary SWs can
determined analytically in this limiting case. Now Eq.~5a!
supports two types of solutions for arbitraryn, viz., either a
vanishing FH (un50) or an arbitrary fundamental but fixe
SH (vn5l/2). In both cases the complementary field~SH or
FH! can be calculated by using Eq.~5b!. It is easy to verify
that in the first case the SH exhibits an exponential de
provided that Eq.~4! holds. Now in combining both types o
solutions various DSWs can be formed. Here we restrict o
selves to the simplest ones, which exhibit characteristic
culiarities of DSWs in quadratic media, namely, unstagge
and staggered DSWs that may be centered either on a s
waveguide~field is located at anoddnumber of guides—odd
DSWs! or between two adjacent waveguides~field is located
at anevennumber of guides—even DSWs!.

To get more specific the odd and even analytical soluti
of Eq. ~5! can be now written as

un
~odd!5dn,0Al~l2a1D/2!, vn

~odd!5
l

2
a unu, ~7a!

un
~even!5~dn,01dn,1!Al@l2~a2D11!/2#,

vn
~even!5

l

2
a un21/2u21/2, ~7b!
g
FIG. 2. Field profiles of the basic bright DSWs. Symbols: analytical model (cu50 andcv51); lines: general case with equal couplin
strength for FH and SH (cu51 andcv51). ~a! Odd, unstaggered;~b! odd, staggered;~c! even, unstaggered;~d! even, staggered.
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respectively, where the sign of the FH fields is arbitra
Here

a5S a1
D

2 D F12S 12
4

~2l1D!2D 1/2G ~7c!

characterizes the decrease of the SH amplitude with dista
from the center wherea.0 anda,0 hold for the unstag-
gered and staggered DSWs, respectively. From the cond
that botha andun have to be real valued anduau,1 has to
hold we obtain the regions of existence of DSWs
l.max~0,12D/2! for unstaggered andl,min~0,212D/2!
for staggered DSWs, which is consistent with Eq.~4!. Note
that the condition for the existence of staggered DSWs~2l
1D,0! is identical to that in the Kerr limit.

FIG. 3. Normalized Hamiltonian vs power for DSWs of diffe
ent topology (D524). ~a! Analytical model (cu50 andcv51),
~b! general case (cu51, cv51). Solid lines: odd DSWs; dashe
lines: even DSWs.
.

ce

on

s

Now we drop the condition of a vanishing coupling co
stant of the FH and solve Eq.~5! numerically for the more
general case of equal coupling of the FH and the SH,
cu5cv51. The results are also useful for double checki
the performance of our analytical model. In Fig. 2 the p
files of the four basic types of DSWs introduced above
sketched as obtained by both models. It is evident that
characteristic features of DSWs are maintained in the a
lytical model. However, it is clear that in this limiting cas
the FH is only excited in a single~odd DSW! or in two ~even
DSW! adjacent guides, respectively.

IV. DYNAMICAL EFFECTS—STABILITY,
INTERACTIONS, COLLISIONS

After having identified the simplest stationary DSWs w
are going to study their dynamical behavior, where prima
concern is paid to their stability. But it is also interesting
look to the collision behavior, which should exhibit the fe
tures typically encountered in nonintegrable systems. I
clear that the latter issue has to be addressed in using num
cal means. But with regard to the stability and localizati
behavior we can exploit a standard procedure frequently u
in discrete systems. It has been suggested@19# that even and
odd DSWs of the same topology and with the same gui
power can be considered as realizations of a common m
but centered at or in-between the array elements. Then
difference in the respective Hamiltonians represent likew
the so-called Peierls-Nabarro barrier~PNB! @15,19#. The re-
alization where the Hamiltonian attains an extremum is c
sidered stable. Moreover, the PNB is a measure for the
calization of the DSW, i.e., if the barrier is sufficiently sma
the solution can move across the array consecutively cha
ing from one realization to the other. We carry out our ana
sis for the analytical model (cu50) as well as the genera
case (cu,vÞ0) where we make use of the numerical so
tions in the latter case and compare the respective result
the analytical model the guided power~2a! and the Hamil-
tonian~2b! can be straightforwardly calculated by using E
~7! as

E~odd!5
l2

2

11a2

12a2
1lS l2a1

D

2 D ,

~8a!
.
FIG. 4. Evolution of unstable unstaggered DSWs (D524). ~a! Decay of an unstable odd SW~l53.05! labeled by a diamond in Fig
3~b!. ~b! Transformation of an unstable even DSW into an odd DSW~l54! labeled by a cross in Fig. 3~b!; contour lines at 4, 2, 1, 0.5.
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57 1131DISCRETE BRIGHT SOLITARY WAVES IN . . .
H ~odd!52l2

a2
D

4
~11a2!

12a2
2l2S l2a1

D

2 D ,

E~even!5
l2

12a2
12lS l2

a2D11

2 D ,

H ~even!52l2

a2
D

2

12a2
2

l2

2
22l2S l2

a2D11

2 D ~8b!

for odd and even DSWs, respectively.
To discuss the stability behavior it is convenient to p

the Hamiltonian normalized by the guided power versus
guided power. The plots for both cases are shown in Fig
where the qualitative agreement is evident. A straightforw
estimation, by using Eq.~2!, yields that the absolute value o

FIG. 5. Power-dependent steering of a beam across the a
(D50, cu51, cv51). Initial shape: that of an unstaggered DS
~l52.5!, but with an initial phase tilt of 0.1 per channel and wi
different power levels.
t
e
3
d

the normalized Hamiltonian for DSW exhibits an upp
bound as @ uH/Eu,(2cu1cv1uDu/21A2E)# whereas for
linear waves this absolute value lies in a band around z
i.e., min(22cu ,D/22cv),H lin /E,max(2cu ,D/21cv).
We expect the value of the Hamiltonian applying to DSW
to be located outside that band but between the upper and
lower bound. In the limit of extreme localization (l→6`)
bothE andH tend to infinity. In the opposite case where th
wave numberl approaches the linear spectrum@see Eq.~4!#
two different cases have to be distinguished~see also Fig. 1!.
If the boundary is set by the linear spectrum of the FH~for
staggered and/or unstaggered DSWs: 2cu.cv6D/2) both
the power and the Hamiltonian vanish simultaneously. T
corresponds to the upper branches in Figs. 3~a! and 3~b!, e.g.,
l50 in the analytical model. On the contrary if the bounda
is set by the SH~for staggered and/or unstaggered DSW
2cu,cv6D/2) both quantities diverge due to a spreadi
SH field ~a51 in the analytical model!. This result can be
easily verified in the analytical model where the denomina
vanishes in Eq.~7c!. As a consequence a power threshold
the DSWs together with a backbend branch in the Ham
tonian versus energy plot exists@see lower area in Figs. 3~a!
and 3~b!, e.g.,l5612D/2 in the analytical model#. We note
that this threshold can appear for either topology of DS
depending on whereE and H diverge. At the turning point
the odd as well as the even solutions transform to soluti
of similar shape but different distribution between the F
and SH components. These backbend branches coincid
even and odd modes for our set of parameters. The res
with respect to the stability of DSWs can be summarized
using Fig. 3 as follows.

Both models yield that odd staggered as well as uns
gered DSWs may be stable whereas their even counterp
are always unstable. They immediately transform into
respective odd DSWs. If odd DSWs of one topology hav
finite power threshold the backbend branch near the lin
band is unstable. This instability manifests itself in a co
plete decay of the DSW into linear waves. It is interesting
note that this instability beyond the turning point is acco
panied by a power transfer to the SH and a complete spr
ing of that power across the array@see Fig. 4~a!#.

In some respects it is surprising that our analytical mo
predicts the stability behavior correctly. We note that t
existence of a power threshold is a peculiarity of the q
dratic system. The stability predictions based on the stud
the Hamiltonian and the related PNB could be confirmed
performing a conventional linear stability analysis.

Moreover these results have been double checked by
merically solving Eq.~1! with the DSW to be probed as th
initial distribution. To perturb the stationary solution eve
harder we have added some stochastic noise to this in
distribution. In Fig. 4~a! the decay of an unstable odd unsta
gered DSW that belongs to a backbend branch@diamond in
Fig. 3~b!# is shown. As mentioned above the power is tran
formed to the SH, which spreads over the array. Note tha
the continuous case this unstable solitary wave with an
cess power would not decay completely but transform int
solitary wave oscillating around a stable solution@20#.

Next we excited an unstable even unstaggered D
@cross in Fig. 3~b!#. After some propagation distance it tran
forms to a slightly oscillating, but stable odd DSW@see Fig.
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1132 57T. PESCHEL, U. PESCHEL, AND F. LEDERER
4~b!#. In some respect this transformation can be regarde
the onset of localization, which is a peculiarity of discre
systems. Relying on the idea of a Peierls-Nabarro bar
introduced above it is clear from Fig. 3 that the solutio
obtained for the limiting case of vanishing coupling betwe
the FH waves are always localized. Thus the unstable e
solutions transform into a resting, but oscillating, stable o
realization. In this case we did not succeed in exciting m
ing solutions. Energy transfer and motion across the a
seem to be mediated by the FH wave. Indeed, staggere
well as unstaggered DSWs exhibit an almost vanishing P
for small power if the coupling in the FH is taken into a
count@see Fig. 3~b!#. This leads to the conclusion that up
a certain power level DSWs of both topologies can mo
across the array. This power dependent dynamical beha
of discrete DSWs can be exploited in a beam steering exp
ment ~see Fig. 5!. Assuming a nonlocalized DSW an initia
phase tilt causes the solution to move across the array w
out changing its shape. If the power is increased the s
scenario as discussed above in the analytical model ca
observed. The PNB between the unstable even DSW and
odd one grows larger and localization sets in. Eventually
the power rests in the initial wave guide which decoup
from the rest of the array. Hence a continuous power
crease allows one to address different waveguides at the
facet of the device.

Finally we performed numerical experiments to study c
lisions and interactions of two moving DSWs. From wh
was said above it is clear that these studies can be
performed if the solutions are not localized. Thus we have
take the coupling of the FH into account and to rely on
numerical solutions. Again we used a stable odd DSWs
imposed a slight phase difference between adjacent guid
provoke the motion across the array if required as in F
6~a! and 6~b!. Due to the inherent complexity of the syste
many different scenarios may occur. First we collided t
moving unstaggered solutions. Figure 6~a! shows a typical
scenario if the velocity is large, e.g., a mere phase shift
to the collision. By decreasing the velocity below a certa
critical value the DSWs fuse, which is an indication for t
nonintegrability of the system~1!. This behavior is in agree
ment with that in the quadratic continuous case@21#. If the
separation between both DSWs decreases and the initia
locity is set to zero we have observed an interaction beha
recalling the formation of a certain kind of bound state. Th
very scenario appears if the DSWs collide on-site@see Fig.
6~b!#.

If a slight change in the initial separation causes a co
sion between two waveguides the interaction leads to
formation of an intermediate unstable even DSW. Finally
translates into a moving DSW@Fig. 6~c!#.
um
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If two DSWs of different topology~staggered and unstag
gered! collide their interaction results in a complete destru
tion of both DSWs and the emission of a dispersive wa
@see Fig. 6~d!#. Hence in some respect staggered DSWs
be regarded as ‘‘antiparticles’’ of staggered DSW beca
the collision of both DSWs evokes their mutual annihilatio

V. CONCLUSIONS

In conclusion we have shown that in contrast to the cu
case bright solitary waves of different topology~staggered
and unstaggered! can exist in the same waveguide array w
a quadratic nonlinearity. Even discrete solitary wave so
tions always turned out to be unstable. Either the stagge
or the unstaggered DSWs~which depends on the mismatch!
exhibit a power threshold if the respective wave vector
proaches the linear wave vector band determined by the
Beyond this threshold two kinds of odd and even solutio
exist. The odd DSW the Hamiltonian of which is closer
that of linear waves decays into those linear waves. As in
cubic case the solitary waves can move across the array
vided that their power is sufficiently small and that coupli
between the FHs is taken into account. If the power a
likewise the Peierls-Nabarro barrier grows larger the so
tions get progressively stronger localized. The collision b
havior critically depends on the velocity and topology of t
solutions as well as the site of collision.
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FIG. 6. Collisions and interactions of DSWs (D50, cu51, cv
51). ~a! Elastic collision of two unstaggered DSWs with larg
velocity ~l512.5!. ~b! On-site collision of the same DSWs bu
without velocity formation of a quasibound state.~c! Collision of
the same DSWs as in~b! but collision site between two
waveguides—formation of a moving DSW.~d! Collision of two
DSWs of different topology~l562.5!—‘‘annihilation’’ of DSWs;
contour lines at 0.5, 1, 2.
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